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A two-dimensional analysis, based on linear surface-wave theory, is developed for an 
oscillating-water-column wave-energy device in water of arbitrary constant depth. 
The immersed part of the structure is assumed of shallow draught except for a 
submerged vertical reflecting wall. Both the cases of linear and nonlinear power 
take-off are considered. The results show that air compressibility can be important 
in practice, and its effects may in general be satisfactorily represented by linearization. 
The analysis indicates that using a turbine whose characteristic exhibits a phase 
difference between pressure and flow rate may be a method of strongly reducing the 
chamber length and turbine size with little change in the capability of energy 
extraction from regular waves. It was found in two examples of devices with strongly 
nonlinear power take-off that the maximum efficiency is only marginally inferior to 
what can be achieved in the linear case. 

1. Introduction 
A time-varying pressure applied on the water free-surface, in the presence of a train 

of progressing waves, will in general result in a non-zero exchange of energy. This 
constitutes the basis of several devices for sea-wave-energy utilization, namely the 
so-called oscillating-water-column devices, in which the reciprocating flow of air, 
displaced by the free surface within a chamber open at the immersed bottom, drives 
an air turbine (see e.g. Moody 1979). In an attempt to model the hydrodynamics of 
such devices, some authors neglected the spatial variation of the interior free surface, 
which was supposed to move as if acted on by a weightless piston. Examples of this 
approach are the works by Evans (1978) and Count et al. (1981), where the piston 
model is adopted on the grounds of the width of the inside free surface being small 
compared with the wavelength. 

Lamb (1905) outlined, and Stoker (1957) worked out in detail, the two-dimensional 
theory of the waves generated in deep water by an oscillating pressure applied 
uniformly over a segment of the free surface, where the spatial variation of the surface 
is correctly accounted for. More general expressions were given by Wehausen t 
Laitone ( 1960), including the cases of two- and three-dimensional non-uniform 
oscillating pressure distributions on water of finite depth. The two-dimensional 
problem of an oscillating surface-pressure applied uniformly between two equally 
submerged vertical plates was dealt with by Ogilvie (1969). 

Evans (1982) considered the general case of wave-power absorption by two- and 
three-dimensional systems of oscillating surface-pressure distributions, including 
the diffraction due to submerged structures. He derived reciprocity relations for the 
applied-pressure and diffraction properties, and presented general expressions for the 
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time-averaged power developed by the pressure forces, which were then applied to 
special cases of single internal free surfaces of simple shapes when the immersed part 
of the structure is of negligible draught. The more complicated problem of an 
oscillating body with chambers that enclose portions of the free surface was dealt with 
recently by Fernandes (1983), who derived reciprocity relations to connect the several 
modes of wave diffraction and radiation. He went on to obtain numerical results for 
an axisymmetric buoy with pneumatic wave-power absorption with the help of a 
singularity distribution method. 

The purpose of the present paper is to analyse the combined effects of several 
factors believed to be relevant to the engineering design of oscillating-water-column 
devices, namely finite water depth, air compressibility, and a turbine characteristic 
that exhibits a phase difference between pressure and flow rate or is nonlinear. In 
order to enable sufficiently simple analytical expressions to be derived, a two- 
dimensional geometry is adopted, and the wave diffraction due to the immersed part 
of the structure is ignored, except for the reflection by a wall behind the chamber 
extending vertically from the free surface to the bottom. 

In $2 expressions are obtained for the waves generated by an oscillating uniform 
surface-pressure, which can be considered as extending to water of finite depth those 
given by Stoker (1957). In $3 the previous results are applied to derive expressions 
for the power absorption from a train of regular incident waves, including the case 
when a vertical reflecting wall is present behind the chamber. The air-flow rate in 
the chamber, due to the motion of the water surface, produces useful work by means 
of an air turbine or equivalent device, whose instantaneous mass-flow rate is assumed 
to be a known function of the pressure difference. The analysis is further developed 
and numerical results are presented, in $4, for the linear case when the springlike 
effect of air compressibility is assumed of constant stiffness, and the mass-flow rate 
of air through the turbine is taken proportional to the pressure difference. The pro- 
portionality constant is allowed to be complex, in order to model a turbine with 
non-zero phase difference between flow rate and pressure. The problem of nonlinear 
power take-off is considered in $5.  

2. Wave generation by an oscillating surface-pressure 
This section is concerned with the two-dimensional analysis of the waves generated 

by a simple time-harmonic pressure applied uniformly over a free-surface segment. 
The depth h is supposed to be constant. We assumed irrotational motion, with the 
usual linearized boundary conditions at  the free surface, and chose a system of 
coordinates (x, y) with the positive y-direction pointing vertically upwards and the 
origin at the undisturbed free surface. The surface-pressure distribution is given by 

(1) 

where X ( z )  = 0 for I x I > a, and X ( x )  = 1 for I z I < a. Here, and whenever a physical 
quantity is equated to a complex expression, only the real part is to be taken, in 
accordance with the usual convention. In this section no submerged barriers are 
assumed to be present. 

The velocity potential can be written as @(x, y, t )  = @(z, y) eiwt, where @ is a complex 
function satisfying Laplace’s equation @zz + $,, = 0. The linearized boundary 
conditions at the free surface are 

p ( x ,  t )  = X ( x )  eiot, 
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where q(x, t)  is the free-surface elevation, p is the water density, and g the acceleration 
of gravity. Additional conditions are $,(x, - h) = 0, at the bottom, and the radiation 
condition (only outgoing waves are generated). A solution to a similar, more general 
problem, in which an arbitrary function of x instead of X ( x )  is assumed for the 
pressure distribution, is given by Wehausen BE Laitone (1960, p. 597). From it we 
obtain, for our case, q = ql+qz,  where 

2eiwt cos kx sin ka 
q1(x, 4 = - dk, npg acothkh-k 

2im 
q2(x ,  t )  = - sin Ka eiwt cos Kx. 

PS 

(3) 

(4) 

In the expressions above a = 0 2 / g ,  and K is the real solution of K tanh Kh = a ,  which 
can easily be recognized as the wavenumber for a regular train of waves of angular 
frequency o. The constant m = ( I  + a h  cosech2 Kh)-l. The integral of (3) can con- 
veniently be transformed with the help of the function 

m-l( k - K) 
f(k) = k-a  cothkh' 

which is such that f ( K )  = 1. For finite values of h it can be found that f(k) is 
continuous, and its first derivative is finite, in the interval - 00 < k < 00. Integrating 
by parts in (3), we find 

where 

m eiWt 

nPg 
V l ( G  t )  = - [F(a + x) + F(a - x)], 

F(x)  = sin& v(K+k)+H(K-k)f(K-k)] Ci(lxl k) dk I," 
-sgn(x) cosKz{n-jom v(K+k)-H(K-k)f(K-k)]si(Ixlk)dk}. (7)  

In this equation H ( x )  is Heaviside's unit step function (equal to unity for x > 0 and 
to zero for x < O ) ,  sgn(x) = f:1 for x >< 0, and Ci ( ) and si(  ) =Si( )-in are the 
cosine integral and sine integral respectively. In  the first integral of (7) the function 
Ci has only a logarithmic singularity (for zero argument) which is integrable. When 
k+m it is f ( k )  = O(k-2), and this, together with the well-known asymptotic 
behaviour of the functions Ci and si, ensures a quick convergence of the integrals. 

In  (7) the functions Ci and si vanish for I x I -+ 00, and the same is true for the two 
integrals. The following far-field expression is then easily obtained for the surface 
elevation : 

(8) 
2im 

q(z+ f 00, t )  = - sinKa ei(ot-Klzl), 
w 

which can be seen to represent outgoing waves. 
In  order to obtain the expression for the power extracted from the waves and the 

corresponding efficiency, we must know the air-flow rate displaced by the water 
free-surface inside the chamber, i.e. we have to calculate the spatially averaged value 
q ( t )  ofthe free-surfaceelevation in the interval -a < x < u. The part ofq corresponding 
to q1 can be obtained from (3) by performing first the integration with respect to x 
and then following a procedure similar to that used to derive (6) from (3). We find 

e i W t  

PsKa 
q ( t )  = -(u+2im sin2 Ku), (9) 
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where 
sin2 ka 

dk. 
k(a coth kh- k) 

By integrating by parts, the latter equation can be written in the following form, 
which is more convenient numerically : 

= : { J o m f ( k ) [ l n y + C i  (2ka)l d k  

-cos(2Ka) s," v(K+k)+H(K-k)f(K-k)]  Ci(2ka) dk 

-sin(2Ka) [n-jom v(K+k)-H(K-k)f(K-k)] si(2ka) dk]}. (10) 

In the case of deep water (Kh+ a), we find the limiting values K = a, m = 1, and, 
instead of (7) and (lo), we obtain the simpler expressions 

F(x) = sin a x  Ci (a I x I) - sgn (2) cos ax [X + si (a I x I)], (11) 
1 

u = --{cos(2aa) X Ci(2aa)+sin(2aa) [n+si (2aa)]-ln(2aa)-y}, (12) 

where y = 0.5772 ... is Euler's constant. I n  the shallow-water approximation (Kh+O) 
i t  is m = f, and F(x)  = -X cosKx, u = -4 sin (2Ka). 

The coefficients A and B, as defined by Evans (1982), can be related to the above 
quantities by 

B + iwA = - 2iawr e-iwt. 

3. Wave-energy extraction 
3.1. Sinusoidal wave incident upon the chamber 

Now we consider the case when there is an incident train of regular waves, travelling 
from x = - co, defined by its elevation 

?la(", t )  = A ei(wt-Kz), (13) 

which produces an oscillating air pressure P(t) inside the chamber. The pressure 
difference P( t ) -  Pa (Pa = outside pressure) is used to drive an air turbine (or 
equivalent device), whose mass-flow rate per unit length of wave crest M(t )  is 
supposed to be a known function of the pressure difference M(t) = VP(t) - Pa]. 

Let V(t) be the volume of air in the chamber, per unit length of wave crest, and 
assume that the chamber walls touch the free surface at x = f a  and are vertical (or 
at least parallel) near the free surface. Then we may write V ( t )  = 2a[H-z(t)], where 
z(t) is the free-surface elevation averaged over the segment -a < x < a,  and H i s  the 
chamber volume above the unperturbed free surface divided by the inside free-surface 
area. (H equals the level of the chamber ceiling measured from the unperturbed free 
surface if the chamber width is constant.) Denoting the air density inside the chamber 
by p , ( t ) ,  we have 

d 
- Y[P(t) - 41 = bc(t) Wl 

I n  addition, the air density pc is supposed to be a known function of the pressure 
P.  A convenient approximation consists in assuming that the air flow is isentropic 
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in the chamber, turbine and connecting ducts, in which case it is pc = p,(P/P,)'/y, 
where pa is the outside air density and y = c p / c ,  is the specific-heat ratio. 

Equation (14) shows that, in general, the overall problem is nonlinear, owing to 
the varying air density pc and to the nonlinearity of the turbine function Y. The 
pressure P(t) is a periodic (in general non-simple-harmonic) function of time, which 
can be expanded in a Fourier series 

00 

P( t )  = P, einwt, 
n-0 

where the coefficients P, are complex quantities to be determined from the geometrical 
and physical characteristics of the system. Comparing (15) and (l) ,  and taking into 
account the linearity of the governing equations for the surface waves, we obtain the 
following expressions for the elevation of the resulting wave motion : 

and for the corresponding average value 
00 A 

Ka PS n-1 
z ( t )  = - s i n K a e i u t + M +  E Pn?jn(t). 

The subscript n in qn and ?j, means that these quantities can be obtained from the 
expressions given in $2 for 7;1 and ?j respectively if w is replaced by nu. (More generally, 
the other quantities depending on o, such as a, K, m, should be written as a,, K,, 
m,, if n > 1.) The coefficients P, can be calculated, at least in theory, from (14) and 
(16), together with the isentropic relation for pc. 

It is particularly important to know the efficiency of the energy absorption. First 
we note that, far away from the chamber ( l x l + o o ) ,  the water motion can be 
considered as the superposition of three types of progressive waves. The time-averaged 
energy flux of the incident wave, per unit length of crest, is 

IAI2pgw Ei = 
4mK 

Besides the incident wave, we have the transmitted wave (subscript t) and the 
reflected wave (subscript r), whose surface elevations qt and qr, for x+ f co , can easily 
be found to be given by 

The corresponding expressions for the energy flux are 

2im 

nm 

4mK PSn-2 Kn 
(19) =-+- P ! P  w E a, )P ,12Ls in2K,a .  

The difference Ei- (E,+ E,) is the average power extracted from the waves. The 
efficiency is then e = 1 - (E,+ E,) /Ei .  

It can easily be found that the maximum value of E is t (in agreement with Evans 
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1982), for P,/pgA = (-4irn sin Ka)-', P2 = P3 = . . . = 0, the latter conditions im- 
plying a linear behaviour of the system. Higher efficiencies, however, can be expected 
by introducing a reflecting vertical wall, which will prevent energy being lost as 
transmitted waves. If Ka = nn (n integer), then e < 0, this meaning that no net 
energy extraction is possible. (In this case e = 0 only if pZ = p3 = ... = 0;  the value 
of does not affect E ,  since pressure oscillations of frequency w do not radiate energy 
in waves.) 

3.2. Rejecting vertical wall behind the chamber 
We consider now the oscillating surface-pressure to be applied over the interval 
- (a  + b)  c x c - b ( b  2 0) ,  and assume a wall submerged vertically from the surface 
to the bottom, at x = 0. The wave field is restricted to the half-plane x < 0. 

Following the same procedure as before, we consider first the radiated wave due 
to an oscillating pressure of unit amplitude. Its surface elevation can easily be found 
to be given by q(z, t ;  a+ b )  -q(x, t ; b ) ,  where q(x,  t ; a )  stands for the expressions 
derived in $2 for the case of an oscillating surface-pressure over the interval 
-a < x < a. The average, taken over the interval - (a+ b)  < x c - b,  is 

where 

,iwt 

r = u(a+b)+u(b)+2u(?ja)-2u(?ja+b), q = sinK(a+b)-sinKb, (21) 

the expression for the function u(a)  being given by the right-hand side of (10) or (12). 
The average elevation for the resulting wave motion, which includes the contribution 

from the standing wave due to the reflection of the incident wave on the wall, is then 

2Aqeiwt P - P ,  cc, 
z ( t )  = -+L+ c Pnijn(t). 

Ka P9 n-1 

Here the higher harmonics i j ,  are obtained from i j  (20) in the same manner as 
indicated in $3.1. 

Equation (14) can be applied as in $3.1, provided that 2a is replaced by a,  since 
the chamber length is now equal to a. Expressions for q,(x+ - m, t )  and E, can be 
derived as outlined in 53.1. The power available to the turbine is simply equal to 
Ei - E,, and the efficiency is given by E = 1 - E,/Ei .  

It is not difficult to show that, if q = 0, i.e. if Ka/2n is an integer or K(a+2b)/n 
is an odd integer, then E 6 0 (e  = 0 only if pZ = P3 = ... = 0). 

In the special case when b = 0 (chamber adjacent to a reflecting wall), it  can be 
found that the far-field expression of the elevation for the reflected wave is identical 
with the expression (18) for qt, it being understood that in this case it is taken for 
x+ - a. Besides, the expression for the average reflected energy flux E, is identical 
with the expression (19) for Et. 

4. Linear problem 
4.1. Analytical expressions 

Simple analytical results can be obtained if the air-density variation is considered 
small and is linearized in terms of the pressure, which for isentropic flow leads to 
p c  = pa+ ( P -  Pa) pa/yPa, and if, in addition, the air-turbine mass-flow rate M is 
assumed to be proportional to the pressure difference (linear turbine). In order to 
explore the eventual benefits of using a phase-controlled turbine, we consider, in 
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general, a complex proportionality constant Ceie (C real positive, 10 I < in), defined 

where the real part of M is taken positive for outward flow. (For incompressible air, 
the coefficient h defmed by Evans (1982) is related to the quantities above by 
h = Ceisp-' (a/g)t.) Assuming z to be small compared with H, the governing equations 
can be linearized, and in particular (14) may be written as 

C eie H d P  dz 
2P(ga)t a yP, dt dt '  
-(p-p) = ---+- (24) 

For the case considered in $3.1 (no reflecting wall), if account is taken of (9), (15) 
and (16), we easily find P, = Pa, P, = 0 (n = 2,3,4, ...) and 

Apg sin Ka 
u-c+ w+iv ' 

Pl = - 

where u is given by (10) or (12), and 

(26) 
K l  K 

v = - (ga)~ C cos 8+ 2m sin2 Ka, w = -- (ga): C sin 8, 
2w 2w 

The springlike effect of air compressibility, represented by 6,  is seen to be equivalent 
to adding an imaginary term to the turbine proportionality constant. The expression 
for the efficiency now becomes 

(28) 
where 

(29) 

It can easily be seen that the efficiency E reaches its maximum value, equal to 4, when 
U = 0, V = i. For given values of Ka + nn and Kh, these resonance conditions yield 
the following expressions for the optimum value of the turbine coefficient : 

E = 2( v- Tn- uz), 
2m(u - E + w) sin2 Ka 2mv sin2 Ka 

U =  , v =  
(u - 6 + w)2 + v2 (u - E+ w)2+ v2. 

[ ( ~ - 5 ) ~ + 4 m ~  sin4Ka] 
tanh Kh 

tan8 = 
2m sin2 Ka ' Ka 

If the air is assumed incompressible (6 = 0), (30a,b) agree with the general condition 
for maximum power, derived by Evans (1982, equation (2.18)), which, for a single 
pressure-surface, can be written, in his notation, A = B -  iwA. 

In the case when a reflecting wall is present, considered in $3.2, we find, instead 
of (251, 

& = - 2Apgq 
r - (+ 2w + is ' 

where q and r are given by (21), and 

K 
s = - (ga)t C cOs 8 + 2mq2. 

w 

The efficiency is now E = 1 - EJE,, and its expression is found to be 

E = 4(S- S2 - R2),  
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2m(r - i$+ 2w) q2 
(r-i$+ 2 ~ ) ~  +s2 ’ 

2msq2 
( r  - E+ 2 ~ ) ~  + s2 ’ 

where R =  S =  (33) 

The maximum efficiency is E = 1 ,  for R = 0, S = !j, and the resonance value of the 
turbine coefficient is given by 

tanh Kh 
tan0 = - [ ( r  - i$)2 + 4m2q4] 

2mq2 ’ Ka 

Equations (30b) or (34b) give the values of C that maximize 8,  for any given values 
of Ka, Kh, Kb, i$ and 8; it  can be found that this is true even if (30a) or (34a) are not 
satisfied. 

4.2. Numerical results 

4.2.1.  Chamber with adjacent wall 

We consider first the special case of a chamber of length a, adjacent to a reflecting 
wall (b  = 0). It can easily be found that the values of the pressure amplitude PI and 
the efficiency E are exactly twice the corresponding ones for a chamber of length 2a 
without reflector, the latter having the same values of Ka, Kh, i$ and 0 as the former, 
and a turbine constant C two times larger. This means that (24)-(29) (and also (30a,b) 
defining the resonance conditions) can be applied, provided that &, E and C are 
replaced by a&, $E and 2C respectively. In particular, instead of ( 3 0 b ) ,  we have 

[(u-lJ2+4m2 sin4Ka] 
tanh Kh 

C = {  Ka (35) 

If no phase difference is allowed (0 = 0), the pressure difference is simply propor- 
tional to the air mass-flow rate, a condition that is approximately fulfilled by the 
so-called Wells turbine (Gato & Falcio 1984). The resonance value of Ka (for E = 1 )  
is then determined by u-i$ = 0. Figure 1 shows a plot of u as a function of 
a/A ( A  = 2x/K = wavelength) for several values of h/A, as well as the straight lines 
representing 6 versus a / h  for different values of H (assuming as standard values 
p = lo3 kg m-3, g = 9.8 m sP2, y = 1.4 and Pa = lo5 Pa). It can be seen that the 
number of positive roots of u-i$ depends on h / A  and H. For constant h/A the first 
positive root (i.e. the lowest resonance value of a for given A )  increases with H, until 
H reaches a critical value depending on h/h, above which no positive roots exist, this 
implying that the efficiency E cannot then attain unity. The critical value of H 
increases with h/A and is approximately equal to 3.6, 5.7 and 10.5 m for h/A = 0.1, 
0.25 and co respectively. These results show that, for fixed H, the air compressibility 
affects the efficiency more strongly for the smaller relative depths h/A. In the case 
of incompressible air, the resonance condition reduces to u = 0. For deep water 
( h / A  = co), u has three positive roots, which are shown in table 1 ,  together with the 
corresponding values of C given by (35). For a given wavelength, the first root is 
obviously the one that yields the smallest chamber width. However, it is interesting 
to remark that the second root allows a considerably smaller turbine diameter, since 
the turbine cross-sectional area is known to be roughly proportional to the volume-flow 
rate divided by the pressure difference, i.e. to Cai. Figure 2 ,  valid for deep water and 
incompressible air, shows how the efficiency is affected by varying a/A and C. 
Maximum efficiency, equal to unity, occurs for a/A = 0.2066 and C = 1.628 = C, (cf. 
table 1 ) .  For C = C,  the efficiency remains above 0.6 if 0.16 < a/A < 0.38. It can be 
seen that an oversized turbine (C = 2C,) allows no higher efficiency for any value of 
a/A, whereas a smaller turbine (C < C,) can give better efficiencies for the larger 
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u and 5 

0 0.2 0.4 0.6 0.8 1 .o 
alA 

several values of H )  with dimensionless chamber length a/A. 
FIQURE 1 .  Variation of u (curved lines for several values of h/A)  and of (straight lines for 

aln 0.2066 0.5766 0.6669 
C 1.628 0.2244 0.7340 

TABLE 1 

wavelengths. In  what follows, whenever resonance working conditions are mentioned, 
it shall be understood that they refer to the lowest positive value of a / A  satisfying 
(30a) (or (34a) in $4.2.2). It is of interest to know the influence of the depth h, given 
the frequency rather than the wavelength. In figure 3, valid for incompressible air 
(6 = 0), the solid line shows m / 2 x  as a function of ah, where a = 02/g as before, and 
a satisfies the resonance condition u = 0. As ah decreases from infinity, it can be seen 
that aa increases by about 7 % to a maximum at ah/2x x 0.31 (h/h z 0.32) and then 
decreases to zero. It can also be seen that the ratio a/A increases monotonically to 0.25, 
and the resonance value of the turbine constant, given by (35), decreases to zero, as 
ah decreases from infinity. These results show the advantage, in terms of reduction 
of chamber length and turbine size, of locating the energy-extracting device in 
shallow waters. 

The discrepancy between results from the present (uniformly applied pressure) 
theory and the rigid-plate model (McCamy 1961) is illustrated in figure 4, for 
incompressible air and deep water. The curves show the efficiency E as a function of 
a/h ,  for a turbine constant C = 1.628. The difference is small for a/h up to about the 
resonance value, but the rigid-plate model is clearly inadequate for larger values of 
a/h,  which agrees qualitatively with the corresponding results given by Evans (1982) 
for a circular disk. 

16 FLM 150 
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E 
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0 0.1 0.2 0.3 0.4 0.5 
a/A 

FIQURE 2. The efficiency E for incompressible air and deep water, plotted against dimensionless 
chamber length alh ,  for 0 = 0 and different values of the turbine coefficient C: -, C = 1.628 = C ,  ; 
..., 0.7C,; --, 0.5C1; ---, 0.25C1; ----, 2C,. 

0.3 

0.2 

0.1 

0 0.2 0.4 0.6 0.8 1 .o 
ah/2rr 

FIGURE 3. Turbine coefficient C and dimensionless values of chamber length a l h  and aa/2x shown 
as functions of dimensionless depth ah/2x,  for resonance conditions ((35) and u = 0) ,  assuming 
incompressible air and 0 = 0. 
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0 0.2 0.4 0.6 0.8 1 .o 
alh 

FIQURE 4. Variation of efficiency E with dimensionless chamber length a/A,  in the cases of an 
oscillating uniformly applied pressure (solid line) and an oscillating rigid plate (dashed line), for 
deep water, incompressible air and turbine constant C = 1.628, 0 = 0. 

If the phase difference 8 is unrestricted, then efficiency equal to unity can be 
attained for any value of a / h  (2a/h =+ 1,2, ...), provided that 8 and C satisfy (30a) 
and (35) respectively. A way that has been proposed for achieving 8 =l= 0 consists in 
employing an air turbine of the Wells type, with controllable rotor-blade stagger angle 
(Gato & Falcgo 1983). Figures 5 and 6, valid for incompressible air, show the 
resonance values of 8 and C respectively as functions of a / &  for several values of h/h.  
A non-zero phase difference implies that, during a fraction (equal to l 8 l / x )  of the 
period, the air pressure increases across the turbine, which in fact then works as a 
compressor supplying energy to the wave field. The ratio 7 between the work of 
compression and the work of expansion done by the turbine during one cycle can 
easily be found to be given by 7 = (x I tan8-81-1+ 1)-l (exactly for incompressible 
air, approximately otherwise). We note that, although efficiency equal to unity can 
be attained in theory regardless of the values of a/A and hence of 7 ,  in practice the 
time-averaged net power produced by the turbine will be severely reduced by 
dissipative effects occurring in the compression and expansion of air in the turbine, 
if 7 is not restricted to small values. Taking, for example, 7 = 0.15 as the acceptable 
upper limit, we obtain 8 = -0.999 rad (-57.2'). Then, from figures 5 and 6, for 
incompressible air, we h d  the resonance values of a / h  and C, which are shown in 
table 2, for h/A = 0.1,0.25 and 00, together with the corresponding values for 8 = 0. 
(If air compressibility is taken into account, it can easily be found, for fixed h/h 
and 8, that the resonance value of a/h increases with 6.) The figures in table 2 show 
how the introduction of phase difference can drastically reduce the size of the system 
(the turbine size being doubly affected by the reductions of a/h and C), at a 
(probably) moderate cost in terms of overall efficiency (theoretically at no cost for an 
isentropic process). 

16-2 
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FIGURE 5. Resonance value of turbine phase difference 6' m a function of dimensionless chamber 
length a / A ,  for incompressible air and several values of dimensionless depth h/h ((30a)). 

2.0 

1.5 

C 
1 .o 

0.5 

h / A  = CQ 

0 0.1 0.2 0.3 0.4 

a/A 

FIGURE 6. Resonance value of turbine coefficient C as a function of dimensionless chamber length 
a/h ,  for incompressible air and several values of dimensionless depth h/h (35). 
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7 = 0.15, 0 = -0.999 rad 8 = 0  

0.1 0.25 m 0.1 0.25 00 

0.090 0.079 0.064 0.249 0.237 0.207 
C 0.59 0.88 0.88 0.67 1.22 1.63 

TABLE 2. Resonance values of a/A and C, for incompressible air and three water 
depths, in the cases of 8 = -0.999 rad (7 = 0.15) and 8 = 0 
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FIQURE 7 .  Resonance values of dimensionless chamber length a/A ( r  = 0, solid line) and of turbine 
coefficient C (8 = 0) ((34b), dashed line) plotted against the dimensionless distance b / A  between 
chamber and reflecting wall, for deep water and incompressible air. 

4.2.2. Chamber with non-adjacent wall 
Displacing the reflecting wall away from the chamber by a distance b not exceeding 

about 0.06A can reduce substantially the resonance value of the turbine constant C ,  
with little effect on the optimum chamber length a, as shown in figure 7, for deep 
water, incompressible air and 0 = 0. 

5. Nonlinear problem 
As mentioned in 53.1, non-zero terms of order higher than one are in general 

expected to appear in the Fourier expansion (15) of P(t) .  As before, we consider the 
mass-flow rate M to be a known function Y of the pressure difference P- Pa. If the 
incident wave is sinusoidal, as we have been assuming, both sides of (14) are periodic 
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functions of time, with period 2n/w, and hence may be expanded in Fourier series. 
Equating the corresponding Fourier coefficients is equivalent to writing 

& 

[ Y ( P -  Pa) + i2ajw(H- z )  pc] e-'jot dt = 0, j = 0, 1 ,2 ,  . . . . (36) Jo2n'o 
(If the chamber length is a the factor 2a is to be replaced by a.) Restricting the Fourier 
expansion (15) of P(t) to terms of order up to n = N, we may consider P, z and pc 
as known functions of t  and of the vector P whose components are p0 (real) and Pl, 
P2, . . . , PN (complex). (The expression of z is given by (16) or (22), and pc is assumed 
related to P by the isentropic equation.) Consequently, (36) may be written in the 
form l$(P) = 0, where only equations up to j = N are kept. The values of the 
coefficients P, can, in principle, be determined by solving this system of nonlinear 
equations. 

We saw that the efficiency E can be expressed in terms of the ratios Pn/A 
(n = 1 , 2 , .  ..) (cf. $3). In  the fully linear case, the amplitude of the pressure fluctuation 
is proportional to A, for a given turbine characteristic, and so the efficiency is 
independent of A ,  as seen in $4. This is not true for the nonlinear case, since (36) 
cannot be written in terms of PJA, except if the effect of air compressibility is 
linearized as in $4, and the function expressing the nonlinear turbine characteristic 
is adequately redefined in order to incorporate the influence of the wave amplitude. 
If this is done, the equations can be expressed in terms of the ratio (P- Pa)/A (rather 
than P and A separately), and the efficiency becomes independent of A, as shown 
next. 

We chose the case of a chamber of length a, adjacent to a reflecting wall, and assume 
the variation of pc to be small and z to be negligible compared with H. Then, if pc 
is linearized with respect to the pressure, as in $4, and z is replaced by its expression 
(22) (with b = 0), we easily fmd the following equations, which replace (36): 

jozn G(T; n) d7 = 0, I 
I G ( 7 ; n )  (37) 

I jozn G(7;n)e-'j7 d~+iB,Z7, = 0, j = 2,3,  ..., 

, j = 1,2,3,  ..., (38) 
where 1 

Bj = jx(aa): [6 K,a 

f is given by (27), and Lf = {no, n1, 17,, . . .} consists of the Fourier coefficients of 
27= (P-Pa)/pgA, i.e. no = (Po-Pa)/pgA, l7, = q / p g A  (i = 1,2 ,  ...). Thedimension- 
less function G is defined by 

where 7 = wt. In  some cases in practice, Y may be considered an odd function; if so, 
it can be found from (37) that no = lT2 = IT, = . . . = 0. 

Equation (38) shows that B, is O(i) or 0u-l) according to whether air compressibility 
is taken into account or not (i.e. E =k 0 or < = 0). Hence, from (37), we may conclude 
that air compressibility has the effect of reducing the order of magnitude of the higher 
harmonics and improving the convergence of the Fourier series. If a self-rectifying 
turbine (like the Wells turbine) is used, the pressure is expected to be a continuous 
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function of time. Hence IC, = O(i-") as j + oc,, and the contribution of the j th  harmonic 
to the efficiency is O(i-""-'), where n 3 2. 

Numerical calculations were performed with the help of Brown's (1973) method 
for solving systems of nonlinear equations. We mention first that computations were 
made for several cases, in which air compressibility is important, by using the exact 
nonlinear isentropic relation between density and pressure, and also the linearized 
approximation described above. The results for the efficiency, obtained by both 
methods, were plotted together and found to be practically indistinguishable, except 
possibly for very large wave amplitudes, when anyway the linear surface-wave theory 
underlying the whole analysis is likely to provide only a poor approximation. 

We consider next the case in which the mass-flow rate is proportional to the square 
root of the pressure difference. This happens approximately, for example, when an 
orifice is used to simulate the turbine in tests with small models. We write 

where S is a dimensionless proportionality constant. From (39) it follows that 
G ( T ; ~ )  = sgn(n) r ln l : ,  where r= S(a/A)k (Here we assume A to be real and 
positive.) Results were computed for the case of a chamber of length a, in deep water, 
with an adjacent reflecting wall (b = 0), air-compressibility effects having been 
neglected (6 = 0). Since Y is an odd function, l7, = 0 for j = 0,2,4,  . . ., as pointed 
out above. Terms up to l7, were kept in the series, the computed values of I l7, I being 
less than 1 n1 I. The calculations revealed that, if the truncation is made at j = 5 ,  
rather than j = 9, the changes in E are O( which indicates that even in this case 
the accuracy is satisfactory for engineering purposes. It was found by numerical 
iteration that, in the range 0 < a/h < 0.5, the maximum attainable efficiency is close 
to unity and occurs for r x 0.118 = ro (say) and a ratio a/h  which does not differ 
significantly from the resonance value 0.2066 for a chamber with a linear turbine (cf. 
table 1) .  The efficiency c is plotted in figure 8 versus a/A for r = ro, 2r0, and +I'o. 
The first curve is to be compared with the curve, also shown in the figure, representing 
a chamber with an optimum linear turbine (C = 1.628, cf. table 1). The comparison 
reveals that the turbine nonlinearity here causes no significant drop in maximum 
efficiency. We note, however, that, in contrast with the linear case, the efficiency 
depends on the amplitude A of the incident wave except if r is kept constant, 
i.e. if the turbine coefficient S is made to vary proportionally to At. 

If a conventional, rather than a self-rectifying, turbine is used, then the air flow 
has to be rectified by a system of valves, so that the flow through the turbine is 
unidirectional. In  this case the turbine characteristic and also the timing of valve 
operation have to be specified. If the time taken to open and close the valves is much 
shorter than the wave period then the air pressure and flow rate may approximately 
be assumed as discontinuous functions of time. 

Analytical results can easily be derived for the strongly nonlinear problem, 
considered next, in which the pressure is kept constant between jumps. This is 
approximately the case when the air circulates in closed circuit, with the water inside 
the chamber pumping air from a low-pressure reservoir to a high-pressure reservoir, 
between which an air turbine operates. We take the incident wave to be sinusoidal 
and defined by (13), and write P- Pa = nApg,  where h'is positive and independent 
of time. The jumps occur at t = f?+jn/w (i an integer) and are positive or negative 
respectively for j odd or even. We easily obtain 5 = Pa, P, = 0 for n = 2 ,4 ,6 ,  . . ., and 

e-in8 
P, = i4h'Apg - 

nIc 
for n odd. 
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FIQURE 8. Variation of efficiency E with dimensionless chamber length a/A, in the case of nonlinear 
turbine characteristic of square-root type, for deep water and incompressible air: -, 
f = 0.118 = fo; ----, 0.5f0; -.-, 2 f o .  The dotted line corresponds to a linear turbine with 
C = 1.628. 0 = 0. 

We further assume that the chamber is located at -a < x < 0, adjacent to a vertical 
reflecting wall at x = 0. If use is made of the expressions derived in $3 for the 
efficiency e,  we find 

= 2 1 7 ~ ~  cos e - I P B ~ ,  (40) 

where 

It can be found that B2, = O ( ~ L - ~ ) ,  which means that, even in this case, a good 
accuracy may be expected by keeping only a few harmonics. Assuming B, > 0, i.e. 
a /A  < f, the value 8 that yields the highest efficiency is obviously 8 = 0. This means 
that the opening of the valves connecting the chamber to the low-pressure reservoir 
or the high-pressure reservoir should coincide in time respectively with the highest 
or the lowest elevation, inside the chamber, of the standing wave resulting from the 
superposition of the incident wave and the wave reflected on the wall (i.e. not 
considering the applied-pressure radiation wave). Setting 8 = 0 in (40), we find that, 
for fixed a / h  and h/h,  the value of ll maximizing the efficiency is l7 = B,/B2, which 
gives e = ( B l / B ) 2 .  These values of e and l7 are plotted in figure 9 as functions of a/h ,  
for deep water. The efficiency has its maximum value, equal to  0.997, for a /h  = 0.222 
and 0.278, the corresponding value of l7 being 0.398. 

6. Conclusions 
An analysis, based on linear surface-wave theory, has been presented to describe 

the performance of an  oscillating-water-column device of simple two-dimensional 
geometry, assuming the incident wave to be sinusoidal. Special attention is dedicated 
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FIQURE 9. Maximum efficiency E (solid line) and corresponding dimensionless pressure l7 (broken 
line) shown aa functions of dimensionless chamber length a/A, in the case of discontinuous time 
variation of pressure of rectangular-wave type. 

to the fully linear case. It is shown that air compressibility can affect significantly 
the performance of full-scale devices whose chamber ‘height’ H (air volume divided 
by inside free-surface area) is expected to attain several metres. If this effect is to 
be adequately represented when testing small models, H (more precisely pgH/yP,) 
must be equal to the corresponding full-scale value, a point that has been disregarded 
in the past. Linearizing the springlike air-compressibility effect can provide a 
satisfactory approximation to what is obtained by using the nonlinear isentropic 
pressure-density relation. We point out that, anyway, the compression and expansion 
of air are more complex and likely to deviate appreciably from an isentropic process, 
owing to viscous losses in the flow through the turbine. 

Theoretically, providing the turbine with phase controlenables the same (maximum) 
amount of energy to be extracted from the waves regardless of how short the chamber 
may be. It is shown that the chamber size (and also the turbine size) can be reduced 
very substantially, before the drop in overall efficiency of the real turbine becomes 
unacceptable as a consequence of the joint effect of viscous losses and increasing phase 
difference. Efficiency equal to unity can be attained theoretically if a reflecting wall 
is present and provided that the turbine has a linear characteristic. However, it is 
found that efficiencies close to unity can still be achieved even in cases of strongly 
nonlinear power take-off. If a nonlinear characteristic is given, the efficiency is 
dependent on the amplitude of the incident wave (unlike the fully linear case), this 
implying that a nonlinear power take-off system has to be tuned to the wavelength 
and to the wave amplitude. 

The present analysis can be extended in order to include the more general case when 
the incident wave is time-periodic, by simply adding the higher harmonics to the 
incident wave field. This can provide a better approximation to the performance of 
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a device in irregular real sea waves. We note that, if the turbine is capable of phase 
control, this means that the pressure can be controlled independently of the flow rate 
within some finite range. If this range is wide enough and a reflecting wall is present 
to prevent energy being lost as transmitted waves, then it seems theoretically possible 
to extract the whole energy from an irregular incident wave by making the radiated 
wave cancel out the wave reflected on the wall. This appears to be a promising 
direction of study, to which the present work can provide some ground. 

In a different way, the present theory can be extended to apply to more complex 
two-dimensional geome tries if results for the diffraction and applied-pressure radiation 
fields are known. For example, the effect of having the chamber lips submerged to 
a finite depth can be accounted for by using the results of Ogilvie (1969). We point 
out that only the radiation potential needs to be given, since the relation of Haskind 
type derived by Fernandes (1983, equation (2.16)) makes it possible to calculate the 
air flux due to the diffraction wave field. If, instead, the diffraction, rather than the 
radiation, problem is solved, the relation derived by Evans (1982, equation (2.28)) 
allows the real part of the complex admittance to be determined, but not the 
imaginary part, which is also required if the device performance is to be calculated 
for a given power take-off characteristic. The imaginary part can possibly be obtained 
by relations of Kramers-Kronig type, but this is inadequate for computational 
purposes, as pointed out by Fernandes (1983). 

Finally, we note that, although a considerable degree of simplification has been 
introduced in the assumptions that underlie the present analysis, particularly the 
choice of geometry, it seems reasonable to expect that some results derived here will 
apply approximately, or at least qualitatively, to more complex situations and be 
relevant to certain wave-energy devices which are presently being considered in 
several countries. 

The authors want to acknowledge the financial support of Instituto Nacional de 
Investigagiio Cientifica, Lisbon, through CTAMFUTL. 
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